Part Number Hot Search : 
X390717 001SM 30SN1 TK10416M MJE2100 144EK RT9267GC PL4V3Z
Product Description
Full Text Search
 

To Download GP1A70R Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 GP1A70R/GP1A71R
GP1A70R/GP1A71R
s Features
1. 2-phase ( A, B ) digital output 2. Sensing accuracy ( GP1A70R Disk slit pitch : 1.14mm ) ( GP1A71R Disk slit pitch : 0.7mm ) 3. PWB mounting type ( Lead bending type ) 4. TTL compatible output 5. Compact, lightweight
OPIC Photointerrupter with Encoder Functions
s Outline Dimensions
1 6.0 7.2 GP1A70R 6.0 12.5 2.0 - 0.2 0.1 13.0 2
( Unit : mm )
Internal connection diagram 6 5 4 3 OPIC 1 Anode 2 Cathode 3 V OB 4 GND 5 V CC 6 V OA
10.5
1. Printers 2. Copiers 3. Numerical control machines
0.75
2 - 2.0 12.0 (6.56 ) 2
0.1
2 - C0.2 2 2 - (1.75) 3 - (1.27) 3 4 1
1 4.0 0.1 5 6
(2.54)
2.5MIN.
6.5
s Applications
0.15
+
3456
*Tolerance : 0.3mm *( ) : Reference dimensions
*"OPIC " ( Optical IC ) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
s Absolute Maximum Ratings
Parameter Forward current *1 Peak forward current Reverse voltage Power dissipation Supply voltage Low level output current Power dissipation Operating temperature Storage temperature *2 Soldering temperature Symbol IF I FM VR P V CC IOL PO Topr Tstg Tsol Rating 50 1 6 75 7 20 250 0 to + 70 - 40 to + 80 260
( Ta = 25C )
Unit mA A V mW V mA mW C C C
Input
Output
*1 Pulse width<=100 s, Duty ratio 0.01 *2 For 5 seconds
" In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device."
GP1A70R/GP1A71R s Electro-optical Characteristics
Input Parameter Symbol Forward voltage VF Reverse current IR Operating supply voltage VCC High level output voltage VOH Low level output voltage VOL Supply current ICC GP1A70R *5 Duty ratio DA , D B GP1A71R Response frequency f MAX.
( Ta = 25C unless otherwise specified )
Conditions IF = 20mA, Ta= 25C VR= 3V, Ta= 25C
*3
Output
VCC= 5V, I F = 20mA IOL= 8mA, VCC= 5V, I F = 20mA *4 VCC= 5V, I F = 20mA
*3 *3
Transfer characteristics
VCC= 5V, I F = 20mA, f = 2.5kHz
*3
VCC= 5V, I F = 20mA
MIN. 4.5 2.4 25 25 -
TYP. 1.2 5.0 4.9 0.1 5 50 50 -
MAX. 1.4 10 5.5 0.4 20 75 75 10
Unit V A V V V mA % % kHz
*3 Measured under the condition shown in Measurement Conditions. *4 In the condition that output A and B are low level. t t *5 D A: AH x 100, D B : BH x 100, Duty ratio : Average disk rotation time per turn t AP t BP
s Output Waveforms
Output A ( VOA) t AH t AP Output B ( VOB) tAB1 t BH t BP Rotational direction : Counterclockwise when seen from OPIC light detector
Fig. 1 Forward Current vs. Ambient Temperature
60 50 Forward current I F ( mA ) 40
Fig. 2 Output Power Dissipation vs. Ambient Temperature
300 250 200
Output power dissipation P O ( mW )
30
150
20
100
10 0 0 25 50 70 75 100 Ambient temperature T a ( C)
50 0 0 25 50 70 75 100 Ambient temperature T a ( C)
GP1A70R/GP1A71R
Fig. 3-a Duty Ratio vs. Frequency (GP1A70R)
80 VCC = 5V I F = 20mA T a = 25C
Fig. 3-b Duty Ratio vs. Frequency (GP1A71R)
80 VCC = 5V I F = 20mA T a = 25C
70
70
Duty ratio ( % )
Duty ratio ( % )
60 50 40 t AH t AP x 100 ( Output A )
60 t AH t AP x 100 ( Output A )
50
t BH t BP x 100 ( Output B )
40
t BH t BP x 100 ( Output B )
30
30 20 1 2 5 Frequency f ( kHz ) 10 1 2 Frequency f ( kHz ) 5 10
20
Fig. 4-a Phase Difference vs. Frequency (GP1A70R )
130 VCC = 5V I F = 20mA T a = 25C
Fig. 4-b Phase Difference vs. Freauency (GP1A71R )
130 VCC = 5V I F = 20mA 120 Phase difference AB1 ( deg. ) t AB1 t AP x 360
120 Phase difference ABI ( deg. )
110 AB1 = t AB1 360 t AP
110
AB1 =
100
100
90
90
80 70 1 2 5 Frequency f ( kHz ) 10
80 70 1 2 5 Frequency f ( kHz ) 10
Fig. 5-a Duty Ratio vs. Ambient Temperature (GP1A70R )
80 70 VCC = 5V I F = 20mA f= 2.5kHz
Fig. 5-b Duty Ratio vs. Ambient Temperature (GP1A71R )
80 VCC = 5V I F = 20mA f= 2.5kHz
70
Duty ratio ( % )
Duty ratio ( % )
60 50 40 t AH t AP x 100 ( Output A )
60 t AH x 100 ( Output A ) t AP 50 t BH x 100 ( Output B ) t BP
t BH t BP x 100 ( Output B )
40
30 20 0 10 20 30 40 50 60 Ambient temperature T a ( C) 70
30 20 0 10 30 40 50 60 20 Ambient temperature T a ( C) 70
GP1A70R/GP1A71R
Fig. 6-a Phase Difference vs. Ambient Temperature
130 VCC = 5V I F = 20mA f= 2.5kHz Phase difference AB1 ( deg. )
Fig. 6-b Phase Difference vs. Ambient Temperature
130 VCC = 5V I F = 20mA f = 2.5kHz
120 Phase difference ABI ( deg. )
120
110 100
AB1 =
110
t AB1 t AP x 360
AB1 =
t AB1 t AP x 360
100
90
90
80 70 0 10 20 30 40 50 Ambient temperature T a ( C) 60 70
80 70 0 10 20 30 40 50 60 70 Ambient temperature T a ( C)
Fig. 7-a Duty Ratio vs. Distance ( Xdirection ) (GP1A70R )
80 70 VCC = 5V I F = 20mA f= 2.5kHz T a = 25C
Fig. 7-b Duty Ratio vs. Distance ( X direction ) (GP1A71R )
80 VCC = 5V I F = 20mA f= 2.5kHz T a = 25C t AH ( ) t AP x 100 Output A 50 t BH ( ) t BP x 100 Output B
70
Duty ratio ( % )
60 50 40 t AH t AP x 100 ( Output A ) t BH t BP x 100 ( Output B ) Duty ratio ( % )
60
40
30 20 - 1.0
30 20 - 1.0
0 Distance X ( mm ) ( Shifting encoder )
1.0
0 Distance X ( mm ) ( Shifting encoder )
1.0
Fig. 8-a Phase Difference vs. Distance ( X direction ) (GP1A70R )
130 VCC = 5V I F = 20mA f= 2.5kHz T a = 25C
Fig. 8-b Phase Difference vs. Distance ( X direction ) (GP1A71R )
140 VCC = 5V I F = 20mA f= 2.5kHz T a = 25C AB1 = t AB1 t AP x 360
120 Phase difference ABI ( deg. )
130 Phase difference AB1 ( deg. )
110 100
AB1 =
120
t AB1 t AP x 360
110 Reference position (-) (+) GP1A71R 90
90
Reference position (-) (+) GP1A70R
100
80 70 - 1.0 Disk 0 Distance X ( mm ) ( Shifting encoder ) 1.0
80 - 1.0
Disk 0 Distance X ( mm ) ( Shifting encoder ) 1.0
GP1A70R/GP1A71R
Fig. 9-a Duty Ratio vs. Distance ( Ydirection ) (GP1A70R )
80 70 VCC = 5V I F = 20mA f= 2.5kHz T a = 25C Duty ratio ( % )
Fig. 9-b Duty Ratio vs. Distance ( Y direction ) (GP1A71R )
80 VCC = 5V I F = 20mA f= 2.5kHz T a = 25C t AH t AP x 100 ( Output A )
70
60 Duty ratio ( % ) 50 40 t AH t AP x 100 ( Output A )
60
50 t BH t BP x 100 ( Output B )
t BH t BP x 100 ( Output B )
40
30
30 20 - 1.0
20 - 1.0
0 Distance Y ( mm ) ( Shifting encoder )
1.0
0 Distance Y ( mm ) ( Shifting encoder )
1.0
Fig.10-a Phase Difference vs. Distance ( Y direction ) (GP1A70R )
130 VCC = 5V I F = 20mA f= 2.5kHz T a = 25C t AB1 t AP x 360 GP1A70R 90 ( +) Reference position (- ) Disk 70 - 1.0 0 Distance Y ( mm ) ( Shifting encoder ) 1.0
Fig.10-b Phase Difference vs. Distance ( Y direction ) (GP1A71R )
140 VCC = 5V I F = 20mA f= 2.5kHz T a = 25C AB1 = t AB1 t AP x 360
120 Phase difference ABI ( deg. )
130 Phase difference AB1 ( deg. )
110 AB1 = 100
120
110 GP1A71R ( +) Reference position (- ) Disk 0 Distance Y ( mm ) ( Shifting encoder ) 1.0
100
80
90 80 - 1.0
Fig.11-a Duty Ratio vs. Distance ( Z direction ) (GP1A70R )
80 70 VCC = 5V I F = 20mA f= 2.5kHz T a = 25C t AH t AP x 100 ( Output A )
Fig.11-b Duty Ratio vs. Distance ( Z direction ) (GP1A71R )
80 VCC = 5V I F = 20mA f= 2.5kHz T a = 25C t AH ( ) t AP x 100 Output A
70
Duty ratio ( % )
50 40
Duty ratio ( % )
60
60
50
t BH t BP x 100 ( Output B )
40
t BH x 100 ( Output B ) t BP
30 20 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Distance Z ( mm ) ( Shifting encoder )
30 20 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 Distance Z ( mm ) ( Shifting encoder )
GP1A70R/GP1A71R
Fig.12-a Phase Difference vs. Distance ( Z direction ) (GP1A70R )
120 VCC = 5V I F = 20mA f= 2.5kHz T a = 25C t AB1 x 360 AB1 = t AP
Fig.12-b Phase Difference vs. Distance ( Z direction ) (GP1A71R )
140 VCC = 5V I F = 20mA f= 2.5kHz T a = 25C
110 Phase difference ABI ( deg. )
130 Phase difference AB1 ( deg. ) t AB1 x 360 AB1 = t AP 120
100
90
110 ( Detecting side ) 100 Z OPIC Disk
80 70 60 0 0.1 0.2 0.3
( Detecting side ) Z OPIC Disk GP1A70R ( Emitting side ) 0.4 0.5 0.6 0.7 0.8
90 80 0 0.1 0.2 0.3
GP1A71R ( Emitting side ) 0.4 0.5 0.6 0.7 0.8
Distance Z ( mm ) ( Shifting encoder)
Distance Z ( mm ) ( Shifting encoder)

6 3
R10.89
( Unit : mm )
3 1.5
R13.45
RO 7.2 X' X X' 7.2 6.5 S < GP1A71R Basic Design> RO ( distance between the disk center and half point of a slit ) and S ( installing position of GP1A71R) will be provided by the following equations. RO= N/120 x 13.45 ( mm ) N : number of slits S= RO- 2.265 (mm) 0.75 11.185 4 10.5 GP1A70R GP1A71R
RO X R13.24 13 6 2.0 0.5
R15.8 13 6 0.3 2.0
Disk center
Disk center
0.1
6.5
10.5
S < GP1A70R Basic Design> RO ( distance between the disk center and half point of a slit ) and S ( installing position of GP1A70R) will be provided by the following equations. RO=N /60 x 10.89 ( mm ) N : number of slits S= RO- 2.265 (mm )
s Precautions for Use
( 1 ) This device is designed to be used under the condition of IF = 20mA ( 2 ) It is recommended that a by-pass capacitor of more than 0.01F be added between V CC and GND near the device in order to stabilize power supply line. ( 3 ) As for other general cautions, refer to the chapter " Precautions for Use" .
0.75
8.625
4
0.1


▲Up To Search▲   

 
Price & Availability of GP1A70R

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X